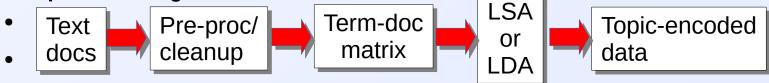
Natural Language Processing for Nuclear Science Scholarship

W. Younes

Lawrence Berkeley Natl. Lab. WANDA2021

Background

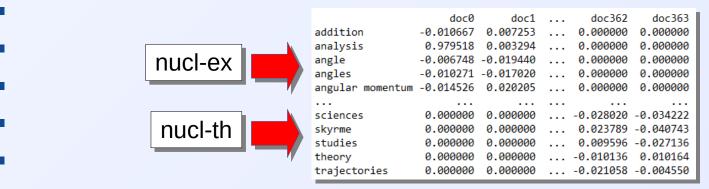
- Overview
 - Large body of existing nuclear science literature + steady daily additions
 - Significant challenge to archive/search/retrieve useful info
 - Goal: store/search by "meaning" rather than keywords
- Approach
 - Develop NLP framework to automatically categorize, summarize, and recommend nuclear science references
- Impact to Nuclear Data
 - Augments the nuclear data pipeline
 - Aids researchers in addressing current and future nuclear data needs


Computational Needs

- HPC resources
 - Development on multi-core desktop machines is ongoing
 - Scalable to HPC machines
- AI/ML resources
 - NLP algorithms to pre-process text (tokenization, stemming/lemmatizing, stop word removal)
 - Graph-based algorithm for keywording and summarization
 - Unsupervised ML algorithms for topic modeling
 - Planned extension to deep learning algorithms for summarization and article recommendation

Computational Techniques

- Techniques used
 - Topic modeling ⇒ documents as prob. distributions over topics, and topics as prob. distributions over words
- Algorithms/software
 - TextRank algorithm (similar to Google's PageRank) for keywording and summarization
 - •
 - Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) for topic modeling



- Homegrown implementations + python modules (nltk, sklearn, gensim)
- Hardware architecture
 - Present focus is on CPU-based computing

Results: LSA

- Papers retrieved from arXiv using two search strings:
 - "abs:fission AND cat:nucl-ex" → 382 papers in group #1
 - "abs:fission AND cat:nucl-th" → 346 papers in group #2
- Docs split at random into training and validation sets
- Pre-processing with TextRank to identify top keywords in each doc
- <u>Training</u>: term-doc matrices for both searches reduced by SVD and combined by forcing block-diagonal form:

 <u>Validation</u>: similarity metric used to categorize new docs from validation set yields correct assignment in typically > 70% of cases

Results: LDA

- All docs from arXiv "fission" expt and theory searches taken together
- Pre-processing (including removal of stop words and stemming)
- Topics extracted with standard LDA:

```
topic #0 = 2.318e-02*fission + 1.730e-02*energy + 1.040e-02*mass + ...
topic #1 = 1.960e-02*fission + 1.393e-02*energy + 8.030e-03*nuclei + ...
topic #2 = 1.313e-02*neutron + 1.306e-02*fission + 1.200e-02*energy + ...
```

Topics extracted with weighted (TF-IDF) LDA:

```
topic #0 = 7.986e-04*fusion + 6.945e-04*tke + 6.787e-04*scission + ...
topic #1 = 6.466e-05*calc + 3.432e-05*tokushima + 3.359e-05*crisp + ...
topic #2 = 3.396e-05*ternary + 3.391e-05*cm + 3.326e-05*nte + ...
```

- Notes:
 - Weighted LDA gives more complementary topics
 - More work needed to filter out nuisance words ("tokushima", "crisp", ...)
 - Work in progress on training and validation of LDA model

Outlook

- To do:
 - Build databases of stop words and meaningful words (vocabulary)
 - Expand testing of LSA/LDA to larger corpuses
 - Develop metrics for tailored article recommendations (e.g., by level/pedagogy)
 - Explore deep-learning applications for summarization and recommendation
- Benefits
 - Complements/augments capabilities of both archivists and users
 - Can be integrated with existing USNDP databases (NSR) and tools
 - Code development uses arXiv, but will eventually include original refereed papers (e.g. PRC)

